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THE THERMAL REARRANGEMENT OF END~7-METBYL-EXC-7-VINYLBICYCLO[3.2.O]HEPT-Z-ENE 

Mark A. Forman and Phyllis A. Leberr: 
Franklin & Marshall College, P.O. Box 3003, Lancaster, PA 17604 (USA) 

Summary: Gas-phase thermolyeis of the title compound in the temperature range of 150’-166-C 
yields predominantly cis-6-methyl-4,7,8,9_tetrahydroindene by tandem [1,3]-[3,3] sigmatropic 
shifts; however, we cannot exclude some direct conversion by an alternative 11,3] sigmatropic 
migration. 

We have recently reported that heating endo-7-methyl-exo-7-vinylbicyclo[3.2.0]hept-2-ene 

(I) affords predominantly cis-6-methyl-4,7,8,9_tetrahydroindene (5).1 However, we now wish to 

provide a more complete profile of the energy surface of this thermal rearrangement, which we 

have thoroughly studied in the gas-phase2 in the temperature range of 150’-166-C. Our 

investigation has confirmed that the major rearrangement product 5 is formed via the 

intermediacy of exo-5-methyl-endo-5-vinylbicyclo[2.2.1]hept-2-ene (4), since we observe a rapid 

increase followed by a gradual decrease in the amount of 4 with time in the pyrolysis mixture. 

Furthermore, we have determined that I is also converted to two minor products, 

endo-5-methyl-exo-5-vinylbicyclo[2.2.1]hept-2-ene (3) and 3-methylbicyclo[4,2,l]nona-3,7-diene 

(6), which we suspect is formed indirectly from I via the intermediacy of 

exo-7-methyl-end@7-vinylbicyclo[3.2.0]hept-2-ene (2).3 The full kinetic system is depicted in 

Scheme I, and the corresponding experimental rate constants4 are reported in Table 1. All of 

these interconversions proceed by irreversible first-order kinetics.5 
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The structure proof for each of the rearrangement products has been based on independent 

synthesis except for 5, which has been characterized by spectroscopic analysis of a preparative 

pyrolysis samp1e.l The epimeric mixture of 3 and 4 was prepared as previously reported,6 and 

the assignments were based on the prior observation that 3 is thermally stable in this 

temperature range whereas 4 rearranges to 5. Compound 6 was prepared from 

3-methylbicyclo[4.2.l]nona-3,7-dien-2-one7 by Wolff-Kishner reduction of the corresponding 

hydrazone. Finally, epimers 1 and 2 have been differentiated using spectroscopic arguments 

outlined earlier. 9 

Table 1: First-order Rate Constants (k x 105 s) 

k12 k13 k14 k45 k26 

15o.o.c 0.032 0.032 0.892 2.52 244 

158. O’C 0.076 0.076 2.07 5.3 510 

166. O’C 0.16 0.16 4.53 10.9 626 

We have obtained 1 epimerically-pure by using a AgNOg-doped silica gel columnlO; however, 

since epimer 2 was never recovered from the column, k26 was obtained by pyrolyzing an 

epimeric mixture of 1 and 2. By also heating the epimeric mixture in the lower temperature 

range of 90’-lOO’C, we have shown that the 2-to-6 conversion is clean. 

Our mechanistic conclusions are based on the activation parameters reported in Table 2. We 

believe that 6 is produced indirectly from 1, although we do not detect any 2.3 The activation 

parameters for both [3,31-sigmatropic rearrangements clearly support their assignment as 

concerted reactions, although this is certainly more convincing for the 2-6 than for the 4-5 

conversion. Whereas our activation parameters for the 2-6 conversion are in good agreement 

with those reported by Hammond and DeBoerll for the transformation of 

cis-1,2-divinylcyclobutane to 1,5-cyclooctadiene, our values for the 4-5 conversion are similar to 

but not identical with those previously reported by ~10~~6 for the same bicyclo[2.2.1] system. 

Table 2: Activation Parameters 

AH’(kcal/mole) AS’(e.u.) 

l-*4 36.7(*.3) +3.9(*.7) 

4+5 32.9(*.2) -2.8(*.4) 

2+ 6 21(i7) -22(*16) 

However, a mechanistic analysis of the competitive [l,ll and [1,31 shifts is more enigmatic. 

Our si/sr ratio of 0.04 for the [1,31-sigmatropic migrations is comparable to the ratio of 0.14 

observed by Berson12 for the rearrangement of endo-6-acetoxy-endo-‘ir-methylbicyclo- 

[3.2.0lhept-2-ene. Berson has already accounted for the predominance of the 

symmetry-forbidden pathway by invoking a “subjacent molecular orbital effect” analysis.13 This 
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similarity in si/sr ratios is good considering that Berson’s system was plagued by two serious 

side reactions that occurred at the higher reaction temperatures: (1) Diels-Alder cycloreversion 

of the bicyclo[2.2.1] products and (2) [1,51-hydrogen shift of the endo-methyl hydrogens. In 

contrast to Berson’s results, however, in which epimerization (formally a Cl,11 shift) proceeds 

almost as fast as the [1,31sr migration, epimerization in our system represents only a minor 

rearrangement pathway. In Yet another study of trans-1,2-divinylcyclobutane,11p14 

epimerization appears to compete favorably with the [1,31 migrations. Therefore, our case is the 

first related to the trans-1,2-divinylcyclobutane parent in which epimerization is not competitive 

with [ 1,3] migration. 

While Berson’s interpretation is that an endo-methyl substituent in a bicyclol3.2.01 compound 

produces a “steric blockade” to the symmetry-allowed [1,3]si pathway, thus favoring another 

“concerted” although symmetry-forbidden pathway, [1,3]sr, I3 the enthalpy of activation for the 

transformation of 1 to 4 falls 9.5 kcal/mole below that reported by Berson for 

end~6-acetoxy-ex~7-methylbicyclo[3.2.0lhept-2-ene, a value similar to the 12 kcal/mole 

increment normally associated with allylic resonance energy in a radical species. Furthermore, 

the value for the entropy of activation is consistent with that predicted by Benson’s additivity 

calculationsI for a bisallylic diradical. Finally, we suspect that there might also exist a direct 

1-5 pathway that we have not yet considered. Attempted Runge-Kutta analysis16 of the raw 

product ratios consistently produced across the temperature range estimated values for k45 that 

were greater than the experimental value by a factor of two. 

To clarify some of these mechanistic questions, we have selected 7-ethyl-7-methyl- 

bicyclo[3.2.0]hept-2-ene (7) and 7-methyl-7-vinylbicyclo[3.2.O]heptane (8) as the next target 

molecules for study. The former will serve to segregate the [l,l] and [1,3] manifolds without 

any potential for successive 13,31 shifts so that we can more closely relate the energetic6 of the 

[1,3] shift of I to 4 to those of the comparable process in the model. The latter model will allow 

us to detect the alternative 11,31 migration of C-l to C-9, should it exist, without any 

interference from the normal [1,3] migration of c-7 to c-3. 

7 ..I 
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